1,160 research outputs found

    Mechanisms of improved survival from intensive followup in colorectal cancer: a hypothesis

    Get PDF
    A meta-analysis of six randomised trials demonstrated that intensive followup in colorectal cancer was associated with an absolute reduction in all-cause 5-year mortality of 10% (95% confidence interval (CI): 4–16) – however, only two percent (95% CI: 0–5) was attributable to cure from salvage re-operations. We postulate that other factors, such as increased psychological well-being and/or altered lifestyle, and/or improved treatment of coincidental disease may contribute to the remaining lives saved, and form important future research questions

    Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960

    Get PDF
    BACKGROUND: Typically, lifetime risk is calculated by the period method using current risks at different ages. Here, we estimate the probability of being diagnosed with cancer for individuals born in a given year, by estimating future risks as the cohort ages. METHODS: We estimated the lifetime risk of cancer in Britain separately for men and women born in each year from 1930 to 1960. We projected rates of all cancers (excluding non-melanoma skin cancer) and of all cancer deaths forwards using a flexible age-period-cohort model and backwards using age-specific extrapolation. The sensitivity of the estimated lifetime risk to the method of projection was explored. RESULTS: The lifetime risk of cancer increased from 38.5% for men born in 1930 to 53.5% for men born in 1960. For women it increased from 36.7 to 47.5%. Results are robust to different models for projections of cancer rates. CONCLUSIONS: The lifetime risk of cancer for people born since 1960 is >50%. Over half of people who are currently adults under the age of 65 years will be diagnosed with cancer at some point in their lifetime

    Developmental exposure to lead (Pb) alters the expression of the human tau gene and its products in a transgenic animal model

    Get PDF
    Tauopathies are a class of neurodegenerative diseases associated with the pathological aggregation of the tau protein in the human brain. The best known of these illnesses is Alzheimer’s disease (AD); a disease where the microtubule associated protein tau (MAPT) becomes hyperphosphorylated (lowering its binding affinity to microtubules) and aggregates within neurons in the form of neurofibrillary tangles (NFTs). In this paper we examine whether environmental factors play a significant role in tau pathogenesis. Our studies were conducted in a double mutant mouse model that expressed the human tau gene and lacked the gene for murine tau. The human tau mouse model was tested for the transgene’s ability to respond to an environmental toxicant. Pups were developmentally exposed to lead (Pb) from postnatal day (PND) 1-20 with 0.2% Pb acetate. Mice were then sacrificed at PND 20, 30, 40 and 60. Protein and mRNA levels for tau and CDK5 as well as tau phosphorylation at Ser396 were determined. In addition, the potential role of miRNA in tau expression was investigated by measuring levels of miR-34c, a miRNA that targets the mRNA for human tau, at PND20 and 50. The expression of the human tau transgene was altered by developmental exposure to Pb. This exposure also altered the expression of miR-34c. Our findings are the first of their kind to test the responsiveness of the human tau gene to an environmental toxicant and to examine an epigenetic mechanism that may be involved in the regulation of this gene’s expression

    Diabetes, Insulin Use, and Cancer Risk: Are Observational Studies Part of the Solution–or Part of the Problem?

    Get PDF
    Cancer has overtaken cardiovascular disease asthe leading cause of death in individuals underthe age of 65 in the general population, but it isstill overshadowed by cardiovascular disease in those with diabetes. People with type 2 diabetes are nonetheless more likely to develop cancer—and to die from it—than members of the general population, so cancer should be numbered among the complications of diabetes (1). Furthermore, the number of cancer victims with diabetes will inevitably rise in proportion to our success in combating vascular disease in the diabetic population. How can the increased cancer risk in diabetes be explained? To begin with, it should be noted that obesity, insulin resistance, and/or increased levels of IGF-1 and insulin are strongly associated with most (but not all) of the diabetes-related cancers in the nondiabetic population (1). This suggests that hyperglycemia does not play a

    General practice vs surgical-based follow-up for patients with colon cancer: randomised controlled trial

    Get PDF
    This trial examined the optimal setting for follow-up of patients after treatment for colon cancer by either general practitioners or surgeons. In all, 203 consenting patients who had undergone potentially curative treatment for colon cancer were randomised to follow-up by general practitioners or surgeons. Follow-up guidance recommended three monthly clinical review and annual faecal occult blood tests (FOBT) and were identical in both study arms. Primary outcome measures (measured at baseline, 12 and 24 months were (1) quality of life, SF-12; physical and mental component scores, (2) anxiety and depression: Hospital Anxiety and Depression Scale and (3) patient satisfaction: Patient Visit-Specific Questionnaire. Secondary outcomes (at 24 months) were: investigations, number and timing of recurrences and deaths. In all, 170 patients were available for follow-up at 12 months and 157 at 24 months. At 12 and 24 months there were no differences in scores for quality of life (physical component score, P=0.88 at 12 months; P=0.28 at 24 months: mental component score, P=0.51, P=0.47; adjusted), anxiety (P=0.72; P=0.11) depression (P=0.28; P=0.80) or patient satisfaction (P=0.06, 24 months). General practitioners ordered more FOBTs than surgeons (rate ratio 2.4, 95% CI 1.4–4.4), whereas more colonoscopies (rate ratio 0.7, 95% CI 0.5–1.0), and ultrasounds (rate ratio 0.5, 95% CI 0.3–1.0) were undertaken in the surgeon-led group. Results suggest similar recurrence, time to detection and death rates in each group. Colon cancer patients with follow-up led by surgeons or general practitioners experience similar outcomes, although patterns of investigation vary

    The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation

    Get PDF
    <p><b>Objectives:</b>In the UK, colorectal cancer (CRC) is the third most common malignancy (behind lung and breast cancer) with 37,514 cases registered in 2006: around two-thirds (23,384) in the colon and one-third (14,130) in the rectum. Treatment of cancers of the colon can vary considerably, but surgical resection is the mainstay of treatment for curative intent. Following surgical resection, there is a comprehensive assessment of the tumour, it's invasion characteristics and spread (tumour staging). A number of imaging modalities are used in the pre-operative staging of CRCs including; computerised tomography (CT), magnetic resonance imaging, ultrasound imaging and positron emission tomography (PET). This report examines the role of CT in combination with PET scanning (PET/CT 'hybrid' scan). The research objectives are: to evaluate the diagnostic accuracy and therapeutic impact of fluorine-18-deoxyglucose (FDG) PET/CT for the pre-operative staging of primary, recurrent and metastatic cancer using systematic review methods; undertake probabilistic decision-analytic modelling (using Monte Carlo simulation); and conduct a value of information analysis to help inform whether or not there is potential worth in undertaking further research.</p> <p><b>Data Sources:</b> For each aspect of the research - the systematic review, the handsearch study and the economic evaluation - a database was assembled from a comprehensive search for published and unpublished studies, which included database searches, reference lists search and contact with experts. In the systematic review prospective and retrospective patient series (diagnostic cohort) and randomised controlled trials (RCTs) were eligible for inclusion. Both consecutive series and series that are not explicitly reported as consecutive were included.</p> <p><b>Review Methods:</b> wo reviewers extracted all data and applied the criteria independently and resolved disagreements by discussion. Data to populate 2 × 2 contingency tables consisting of the number of true positives, true negatives, false positives and false negatives using the studies' own definitions were extracted, as were data relating to changes in management. Fourteen items from the Quality Assessment of Diagnostic Accuracy Studies checklist were used to assess the methodological quality of the included studies. Patient-level data were used to calculate sensitivity and specificity with confidence intervals (CIs). Data were plotted graphically in forest plots. For the economic evaluation, economic models were designed for each of the disease states: primary, recurrent and metastatic. These were developed and populated based on a variety of information sources (in particular from published data sources) and literature, and in consultation with clinical experts.</p> <p><b>Results:</b> The review found 30 studies that met the eligibility criteria. Only two small studies evaluated the use of FDG PET/CT in primary CRC, and there is insufficient evidence to support its routine use at this time. The use of FDG PET/CT for the detection of recurrent disease identified data from five retrospective studies from which a pooled sensitivity of 91% (95% CI 0.87% to 0.95%) and specificity of 91% (95% CI 0.85% to 0.95%) were observed. Pooled accuracy data from patients undergoing staging for suspected metastatic disease showed FDG PET/CT to have a pooled sensitivity of 91% (95% CI 87% to 94%) and a specificity of 76% (95% CI 58% to 88%), but the poor quality of the studies means the validity of the data may be compromised by several biases. The separate handsearch study did not yield any additional unique studies relevant to FDG PET/CT. Models for recurrent disease demonstrated an incremental cost-effectiveness ratio of £ 21,409 per quality-adjusted life-year (QALY) for rectal cancer, £ 6189 per QALY for colon cancer and £ 21,434 per QALY for metastatic disease. The value of handsearching to identify studies of less clearly defined or reported diagnostic tests is still to be investigated.</p> <p><b>Conclusions:</b> The systematic review found insufficient evidence to support the routine use of FDG PET/CT in primary CRC and only a small amount of evidence supporting its use in the pre-operative staging of recurrent and metastatic CRC, and, although FDG PET/CT was shown to change patient management, the data are divergent and the quality of research is generally poor. The handsearch to identify studies of less clearly defined or reported diagnostic tests did not find additional studies. The primary limitations in the economic evaluations were due to uncertainty and lack of available evidence from the systematic reviews for key parameters in each of the five models. In order to address this, a conservative approach was adopted in choosing DTA estimates for the model parameters. Probabilistic analyses were undertaken for each of the models, incorporating wide levels of uncertainty particularly for the DTA estimates. None of the economic models reported cost-savings, but the approach adopted was conservative in order to determine more reliable results given the lack of current information. The economic evaluations conclude that FDG PET/CT as an add-on imaging device is cost-effective in the pre-operative staging of recurrent colon, recurrent rectal and metastatic disease but not in primary colon or rectal cancers. There would be value in undertaking an RCT with a concurrent economic evaluation to evaluate the therapeutic impact and cost-effectiveness of FDG PET/CT compared with conventional imaging (without PET) for the pre-operative staging of recurrent and metastatic CRC.</p&gt

    Risk Factors for Breast Cancer and Expression of Insulin-Like Growth Factor-2 (IGF-2) in Women with Breast Cancer in Wuhan City, China

    Get PDF
    PURPOSE: The purpose of this study was to explore the risk factors for breast cancer and establish the expression rate of IGF-2 in female patients. METHODS: A case control study with 500 people in case group and 500 people in control group. A self-administered questionnaire was used to investigate risk factors for breast cancer. All cases were interviewed during a household survey. Immune-histochemical method was used to inspect the expression of IGF-2 in different tissues (benign breast lesions, breast cancer and tumor-adjacent tissue). RESULTS: Multivariate adjusted odds ratios and 95% confidence intervals were calculated using unconditional logistic regression. High body mass index (OR = 1.012,95%CI = 1.008-1.016), working attributes (OR = 1.004, 95%CI = 1.002 = 1.006), long menstrual period (OR = 1.007, 95%CI = 1.005-1.009), high parity OR = 1.003, 95%CI = 1.001-1.005) , frequent artificial abortion (OR = 1.004, 95%CI = 1.001-1.005), family history of cancer (OR = 1.003, 95%CI = 1.000-1.005), period of night shift (OR = 1.003, 95%CI = 1.001-1.006), live in high risk environment (OR = 1.005, 95%CI = 1.002-1.008), and family problems (OR = 1.010, 95%CI = 1.005-1.014) were associated with increased risk for breast cancer. In this study, good sleeping status, positive coping strategies, subjective support, and utility degree of social support were associated with reduced risk for breast cancer (OR = 0.998, 0.997, 0.985, 0.998 respectively; 95%CI = 0.996-1.000, 0.994-1.000, 0.980-0.989, 0.996-1.000, respectively). In benign breast lesions, breast cancer and tumor-adjacent tissue, IGF-2 was mainly expressed in the cytoplasm, but its expression rate was different (p<0.05). CONCLUSIONS: The incidence of breast cancer is a common result of multiple factors. IGF-2 is involved in the development of breast cancer, and its expression varies in different tissues (benign breast lesions, breast cancer and tumor-adjacent tissue)
    corecore